Approximation by special values of harmonic zeta function and log-sine integrals

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Log Sine Integrals and the Mordell-tornheim Zeta Values

We introduce certain integrals of a product of the Bernoulli polynomials and logarithms of Milnor’s multiple sine functions. It is shown that all the integrals are expressed by the Mordell-Tornheim zeta values at positive integers and that the converse is also true. Moreover, we apply the theory of the integral to obtain various new results for the Mordell-Tornheim zeta values.

متن کامل

VALUES OF THE RIEMANN ZETA FUNCTION AND INTEGRALS INVOLVING log ( 2 sinhf ) AND

Integrals involving the functions log (2 sinh(0/2)) and log(2sin(0/2)) are studied, particularly their relationship to the values of the Riemann zeta function at integral arguments. For example general formulae are proved which contain the known results Γ log 2 (2sin(0/2))d0 = 7π 3 /108, Jo Γ 01og 2 (2sin(0/2))d0 = 17τr 4 /6480, Jo / (log 4 (2sin(0/2))-^0 2 log 2 (2sin(0/2)))d0 = 253π 5 /3240, ...

متن کامل

Mahler measures, short walks and log-sine integrals

The Mahler measure of a polynomial in several variables has been a subject of much study over the past thirty years — very few closed forms are proven but more are conjectured. In the case of multiple Mahler measures more tractable but interesting families exist. Using values of log-sine integrals we provide systematic evaluations of various higher and multiple Mahler measures. The evaluations ...

متن کامل

On Eulerian Log-Gamma Integrals and Tornheim–Witten Zeta Functions

Stimulated by earlier work by Moll and his coworkers [1], we evaluate various basic log Gamma integrals in terms of partial derivatives of Tornheim– Witten zeta functions and their extensions arising from evaluations of Fourier series. In particular, we fully evaluate

متن کامل

Computing Special Values of Partial Zeta Functions

We discuss computation of the special values of partial zeta functions associated to totally real number fields. The main tool is the Eisenstein cocycle Ψ , a group cocycle for GLn(Z); the special values are computed as periods of Ψ , and are expressed in terms of generalized Dedekind sums. We conclude with some numerical examples for cubic and quartic fields of small discriminant.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Number Theory and Physics

سال: 2013

ISSN: 1931-4523,1931-4531

DOI: 10.4310/cntp.2013.v7.n3.a5